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Abstract

Knowledge of the permeability tensor in liquid
composite molding is important for process modeling and
optimization. However, experimental determination of the
permeability is difficult and time consuming. In this work,
a lattice Boltzmann simulation which has been modified
for flow in porous media is used to predict permeability as
a function of yarn location, orientation, and fiber fraction.
Calculated permeabilities are compared with experimental
measurements for a variety of systems. Good agreement is
achieved as long as the mesh size is greater than the size of
the smallest throats in the porous medium.

Introduction

Fluid flow in the fiber porous media used in
composites processing operations is generally modeled
using Darcy’s law, given by
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where v
r

 is the average (superficial) velocity in the
medium, P  is the pressure, K  is a symmetric, second

order tensor known as the permeability and µ is the fluid
viscosity.

The development of tools for predicting the
permeability of fibrous porous media as a function of
structure is of practical importance in a number of
composites manufacturing processes. This capability
would speed process design by helping to reduce the large
number of experimental measurements currently required
to determine such data, and help towards establishing
processing-performance relations. This is especially true in
light of the advances being made in the development of
computational textile modeling tools, which enable rapid
construction and evaluation of new textile designs (1,2), as
well as imaging methods for determining the structure of
the fiber material (3,4).

Computational prediction of permeability (4-9)
involves developing a detailed model for the flow
geometry, imposing a pressure drop across the media,
solving the appropriate transport equations for the detailed

flow field, and then back-calculating the permeability by
applying Darcy’s law. Selection of the appropriate
transport equations for modeling flow in fibrous porous
media is complicated by the fact that this problem involves
both an open region around the fiber tows that make up the
media, and the porous region inside the tows. One
approach is to model the flow in the open media using the
Stokes equation given by
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and to model the flow inside the tows using the Brinkman
equation, which has the form
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Equation (3) has the form of a superposition of Darcy's law
and the Stokes equation. Thus, it is able to properly
describe Darcy flow in regions where velocity gradients
are low, and also, due to the second order terms, to satisfy
the proper boundary conditions (i.e., continuity of velocity
and stress) at the tow-fluid interface separating the
discontinuous media.

Previous studies using the “Brinkman approach”
fall into two categories. In the first case, the model
equations are solved using “unit cell” flow geometries
which due to imperfections and packing anomalies, are
only approximations of the actual fiber structure. In the
second case (such as that obtained by imaging data),
detailed information on the flow geometry is available, but
it is difficult to be sure that all the statistical variations
present in the full porous media are accounted for in the
model microstructure. Thus, the lack of one-to-one
correspondence between the flow geometry used in the
calculations and the actual porous media used to obtain
experimental measurements, makes evaluation of the
accuracy of the Brinkman approach difficult to interpret.

In this study, a model porous media is
constructed. Experimental measurements are compared
with calculations using a Lattice Boltzmann model
modified for flow in fibrous porous media. This controlled
study is undertaken in order to try and accurately evaluate
the applicability of the Brinkman approach to flow in such
heterogeneous media. Results for saturated permeability
computations are reported here.



Experimental

Model Porous Media

The model porous media was constructed using
an array of porous disks thermoformed from continuous
strand mat (CSM). The 7.62 cm disks were formed by
compression molding layers of CSM (Uniflo 750 by
Vetrotex Certainteed) in a hydraulic press. The resulting
preform was placed in a pneumatic press and the disks
were stamped out using a 7.62 cm circular punch. The
CSM disks, representing the tows in a fiber preform, were
arranged in either a square or hexagonal array in a window
frame type mold. These arrays were typically 4 unit cells
wide and 4 unit cells in length. The spacing between the
circles was varied from 0 cm to 0.08 cm. A typical
configuration is shown in Figure 1.

The mold is a window frame type mold with
spreading gates at both the inlet and outlet ports. The top
platen of the mold has a 30.48 cm x 35.56 cm x 3.81 cm
thick glass window for monitoring the flow process. The
bottom platen has an array of pins that can be projected
into the mold cavity to secure the circles or recessed
depending on the desired arrangement of the preform
circles. The pins can also be removed to serve as ports for
pressure transducers. The mold platens were clamped
together with bolts around the perimeter. Two 103 kPa
pressure transducers (Omega, model PX605) were used to
monitor the pressure in the mold. One pressure transducer
was 3.81 cm from the spreading gate and was in-line with
the inlet and outlet ports. The second pressure transducer
was 15.24 cm from the first pressure transducer and was
also in-line with the ports. The molding experiments were
carried out in a vertical arrangement resulting in a
hydrostatic head. The hydrostatic head ranged from 5.5
kPa to 6.2 kPa depending on the arrangement of circles.

Permeability Measurements

Permeability measurements were conducted on
pure both pure CSM mat alone (in order to characterize the
permeability of the model tows) and on the model porous
media in a number of different configurations. Corn syrup
solution was used as the test fluid. Distilled water was
added to corn syrup in a ratio of 2/5. This ratio produced a
corn syrup/water solution with a viscosity of 0.125 Pa-s at
23° C.

The corn syrup solution was injected into the
mold under constant pressure conditions using compressed
nitrogen. The flow rate into the mold was monitored using
calibrated capillary tubes and a differential pressure
transducer across the ends of the tube. The flow rate
exiting the mold was determined by measuring the
volumetric flow rate of the fluid using a graduated cylinder
and a stopwatch. The flow rate was adjusted using a

control valve between the calibrated tubes and the inlet
port of the mold.

During the experiments on the model porous
media, as the initial shot of resin passed around the tows, a
pocket of air was entrapped (Figure 2). The corn syrup
solution was continually pumped through the system until
all the voids were eliminating. After saturation occurred,
the volumetric flow rate and pressures were measured.
Typically six measurements were recorded at each pressure
and the flow rate was cycled through the maximum
pressure of the pressure transducers or the control valve
range. This was done to assure there were no changes in
the model porous media characteristics as a result of the
flow.

Numerical Modeling

Lattice Boltzmann Method

Solutions to model Equations (2-3), together with
a conservation of mass equation, were obtained using a
lattice Boltzmann method previously described in detail
elsewhere (5,6). The method involves the solution of the
discrete Boltzmann equation for the particle velocity
distribution function ),( txnα , where traditional fluid flow
quantities such as density and velocity are obtained
through the moment sums
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where ),( txρ  and ),( txu  are the macroscopic fluid

density and velocity, m is the mass of fluid, αv  are
components of the discrete velocity space, and N is the
number of velocities comprising the velocity space. The
particle distribution function ),( txnα is governed by the
discrete Boltzmann equation given by
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where ),( txαδ  is the collision operator which couples the

set of velocity states αv . Most LB formulations employ
the linear “BGK” form (5,6,10) of the collision operator in
which the distribution function is expanded about its
equilibrium value
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where ),( txneq
α  is called the equilibrium distribution

function and τ is a relaxation time for collisions controlling
the rate of approach to equilibrium. The form of the



equilibrium distribution function depends on the particular
lattice model chosen. The three-dimensional, “d3q15”
model (10) which resides on a cubic lattice is used here (d3
indicates the model is three-dimensional, q15 refers to the
number of components in the velocity space).

To model flow in reinforcement materials that
have both open and porous regions, the velocity in porous
regions is defined as
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where the function F is given by
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where u is the Navier-Stokes velocity, and 
tow

K is the

micro-permeability tensor of the reinforcement material in
the porous region.

Permeability Computation

Permeability for different flow directions was
computed by imposing a constant pressure along opposite
faces of the lattice in the desired direction (see Figure 3)
and integrating the system of equations above to steady-
state. Estimates for the intra-tow permeability values were
obtained from the formulas given in (9). The steady-state
velocity field at the inlet was integrated over the surface to
obtain the flow rate, Q, and this was used in the formula

PA
QL

Keff ∆
=

µ
( 10)

to obtain the effective permeability, Keff, for the desired
direction.

Results and Discussion

In all, four cases were investigated. These are
detailed in Table 1 which shows the packing arrangement,
inter-tow spacing, intra-tow permeability and the measured
and computed permeabilities of the model media. In the
first two cases, the tows were arranged such that there was
no space between them, but with different intra-tow
permeabilities. In the second two cases, the tows were
arranged with a 0.08 cm spacing between them, but with
square and hexaganol packing arrangements, respectively.
An example velocity field from the flow calculations is
shown in Figure 4.

The table shows that the permeability values
obtained for the case of 0.08 cm spacing between the tows,
is in excellent agreement with the experimental

measurements. The computed values is about 8% lower for
the case of the square packing arrangement, and about 12%
higher for the case of the hexagonal packing arrangement.
Since permeability measurements themselves have a 20%
error associated with them, these results must be
considered to be excellent.

Calculated results for the case of zero packing
spacing between the model tows are in poor agreement
with the experimental measurements. The results for both
cases are higher than the experimentally measured values
by over an order of magnitude. We have observed the
problem previously in purely numerical works (5,7). The
problem stems from the inability to accurately mesh the
gap between the tows when the tows get extremely close.
In this case, the length scale for the diffusion of
momentum is on the order of the square root of the tow
permeability, which is extremely low. Thus, there is not
sufficient resolution to resolve the flow. The consequences
of this numerical problem on permeability computation are
that we expect the Brinkman approach to be accurate
provided our mesh size is finer than the smallest pore size
in the medium. Whether this problem has any impact on
calculations in woven (or like) materials in which tows
touch each other, but there are at the same time large pore
spaces for flow, will be the subject of future studies.

Conclusion

A model porous media was constructed for the
purpose of testing the “Brinkman” approach to modeling
flow in fibrous porous media. Modeling and experimental
measurements were compared for flow through an array of
porous circular cylinders. Excellent agreement (on the
order of 10%) was found between measured and
experimental permeabilities when the gap spacing between
the tows was of the same order of magnitude as the flow
mesh size. However, theory and experiment diverge when
the gap spacing is reduced to zero.
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Array Type Array Spacing
(cm)

Tow Permeability
(cm2)

Array Permeability
(cm2)

Experimental

Array Permeability
(cm2)
Model

Square 0 6.17e-7 4.66e-6 6.5e-5
Square 0 1.55e-7 9.06e-7 2.04e-5
Square 0.08 2.68e-7 7.97e-5 7.4e-5

Hexagonal 0.08 2.95e-7 2.61e-5 2.97e-5

Table 1. -- Comparison of experimental cell permeabilities with the LB model for flow through arrays of permeable circles.

Figure 1. Schematic of the model porous media.
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Figure 2. Void formation during the injection of the model porous media.

Figure 3. Boundary conditions for the computational geometry.

Figure 4. Computed velocity profile for flow through the model porous media.
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